走进科学
用数学方法找到对的她
[-]
约翰尼斯·开普勒。史上最伟大的天文学家之一,发现了行星运动的三大定律,学者和数学家。而在1611年,他需要的是一个老婆。前开普勒夫人死于匈牙利斑疹热,一要抚养孩子,二要管理家务,开普勒决定找一些老婆候选人。只不过,事情并不顺利。
身为一个严谨的科学家,他决定逐一面试11个候选人,并认真做笔记。可惜的是,这变成了一个满是失望的小册子。
第一个候选人,开普勒写到,“口臭。”
[-]
第二个,“养尊处优”。她是品味太贵,没戏。
[-]
第三个嘛,已经和别人订婚了,不大可能。而且那个男和□□有个私生子。所以……更难搞了。
[-]
第四个长得不错,“运动员似的高挑身材”……
[-]
不过,开普勒先生想看看下一个(也就是第五个)。因为有人告诉他,第五个“端庄,节俭,勤奋,爱继子(据说)”。于是,开普勒先生犹豫了。他犹豫了太长太长时间,以致于4号和5号等得不耐烦了,跑了。而下面的6号,则让他有点害怕。她是一个大小姐,而开普勒先生“怕奢华的婚礼花费太贵”……
[-]
第七位女士很是迷人,开普勒先生喜欢她。不过由于开普勒先生还没过完自己的列表,所以他让她等等。然而,7号小姐不是喜欢等的人,她拒绝了开普勒先生。
[-]
开普勒先生并不怎么关心第八号小姐,不过他觉得她的母亲“是个很赞的人”。
[-]
第九号是个病秧子,第十号的体型对“要求不高的□□丝”来说都太过了。而最后一个,十一号,还是个萝莉。筛遍了候选人,完全没约成,开普勒先生开始想,好像哪里做错了?
开普勒所需要的,是优化策略,一种不能保证成功但能将失望降至最低的方法。数学家们觉得,我们能算出这样的公式来。
如果你有自己的候选列表,老婆也好,老公也好,约会也好,工作也好,这方法都管用。规则很简单:只要你的选择有限,你可以做一个列表,然后挨个来。再一次声明,不总能成功,。但对数学家来说,足够了。
这个问题甚至有个名字:(开普勒的)婚姻问题。后来,又被衍生为,秘书问题。比如,你有20个候选人要挨个面试,在面试之后,你必须决定要不要。要,选择结束;不要,那就喊下一位。不能回头。一旦决定聘用,问题结束。
[-]
根据马丁·加德纳在1960年的说法,最好的办法是,先面试前36.8%的候选人,但不录用他们。在此之后,一旦遇到比前面这36.8%里最好的还好的,立马录用。
为什么是36.8%呢?这个答案牵扯到数字e,1/e=0.368。学霸可以看这篇论文(pdf)。很显然,这个公式经过了无数次的验证。尽管它不能保证结果最优,但你有36.8%的机会。对于11个老婆候选人来说,足够了不是么。
让回到开普勒先生那。如果,当时开普勒先生用了这个公式,会怎样呢?11的36.8%的是4,所以他要pass掉前4个候选人,从第五个开始,只要比前4个好,开普勒先生就应该求婚。也就是,经过一番折腾后,开普勒先生会和5号小姐结婚。(还记得5号是谁么?)
如果开普勒先生当时知道这个公式(这也是当今数学上最优停止的一个例子),他便能省去后后面一批人的约会了。而且,和第五号结婚,结局不要太好。